WINS Overview

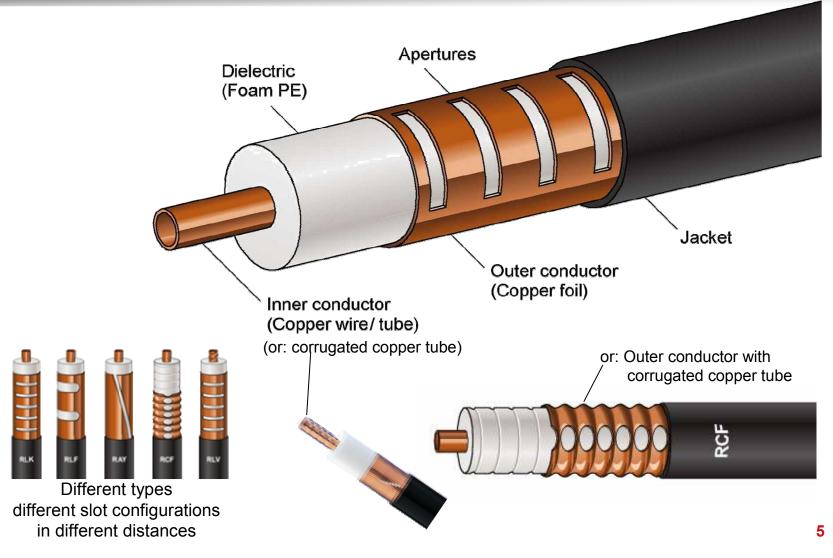
Diego Di Carlo LatAm Field Service Engineer

Solução Tradicional

Solução Tradicional


Características

- Normalmente os APs são instalados APARENTES e próximos aos locais onde a cobertura é necessária.
- O controle da cobertura é realizado apenas na distribuição dos APs, na escolha e posicionamento das antenas (omni / painel).
- Este controle é INEFICIENTE na maioria das vezes:
 - Sinal muito forte próximo ao AP
 - Deficiente em locais obstruídos (mesmo que estejam próximos)
 - Probabilidade de vazamento de sinal é MAIOR


Solução Inovadora Proposta

 Utilização de um sistema distribuído de cabo irradiante para que irradiação do sinal ocorra mais próximo do usuário, evitando obstruções.

RFS RADIAFLEX Radiating Cables

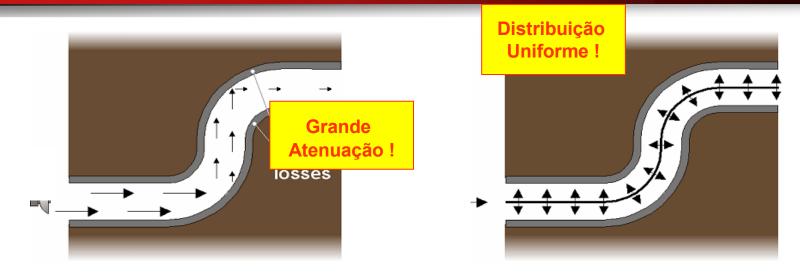

ClearFill®Line: Radiaflex radiating cable

Features/Benefits

- RFS RADIAFLEX: World's largest portfolio of radiating cables; global leadership (technology, market share)
- Lower cost/best service:
 - Multi-band
 - Future-proof
- Best coverage:
 - · No shading by vehicles
 - · Smooth everywhere, even in trains
 - Proven safety: low smoke, flame & fire retardance
 - Better reliability vs antennas
 - Tested up to 6 GHz
 - DVB-H, DVB-SH, WiMAX, LTE ready
 - Live test environment in Hanover metro
 - · Not sensitive to reflection
 - Less sensitive to wind

Typical environments

Many curves, Small tunnel cross section



This is to confirm that RADIAFLEX® Cables from Radio Frequency Systems GmbH meet the following international, European and national standards:

		Jacket option			
Standard		J 1)	JFN 1)	JFL 1)	
IEC 60754-1/-2 EN 50267-2-1 / -2-2 VDE 0482-267-2-1 / -2-2	halogen free, non corrosive	~	~	٨.	
IEC 60332-1 EN 60332-1 VDE 0482 -332-1	flame test	-	~	~	
IEC 60332-3-24 (Category C) EN 60332-3-24 VDE 0482-332-3-24	cable bundle test	-	√ ²⁾	~	
IEC 61034 EN 61034 VDE 0482-1034	low smoke emission	-	√ 3)	~	

Comparativo de Rádio Propagação entre antena e cabo irradiante

Fenômenos físicos:

- O sinal de Radio Freqüência (RF) no espaço livre perde metade de sua potência a cada dobro da distância.
- Obstáculos físicos e reflexões também atenuam ainda mais o sinal de RF.
- Quanto mais alta a faixa de freqüência, piores são as condições de propagação.
- O próprio usuário é um obstáculo a propagação do sinal de RF.

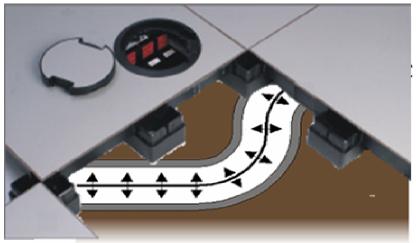
Passive System Description

The most RF broadband passive distributed antenna system (DAS)

- CELLFLEX and CELLFLEX LITE low loss feeder cables (→ TML training)
- High performance RADIAFLEX radiating cables
- Broadband and ultra-broadband indoor antennas
- Broadband and ultra-broadband, low insertion loss, indoor passive RF components (couplers, splitters)

Passive System Description

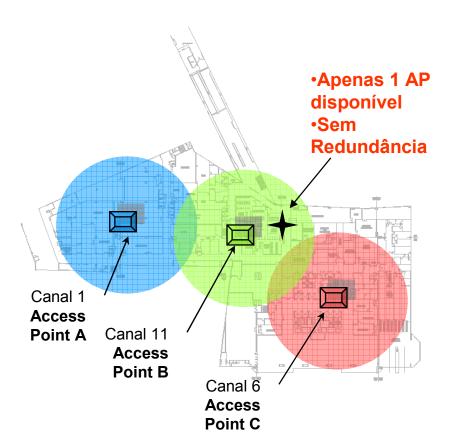
- Wilkinson Power Splitters
 - Microstrip Design
 - Low Power Rating
 - Isolated output ports
 - Good VSWR in RX/TX
 - Various bands available

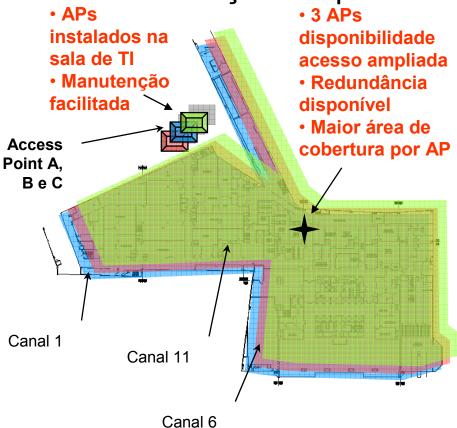


Nova Solução Proposta

VANTAGENS

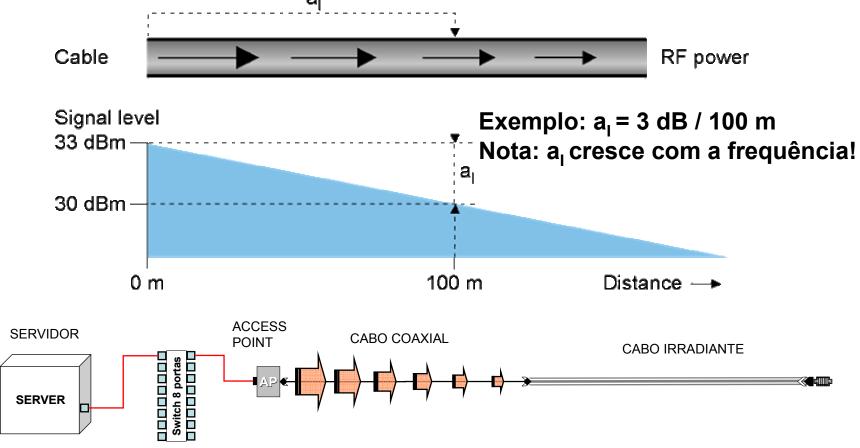
- Permite uma cobertura maior com um mesmo AP
- Cobertura mais homogênea em todos os ambientes desejados
- Melhor solução estética e tecnicamente mais abrangente e durável
- Segurança física: todos os elementos do sistema ao alcance somente de pessoal autorizado
- Permite um sistema instalado único combinando Wi-Fi, celular, etc.



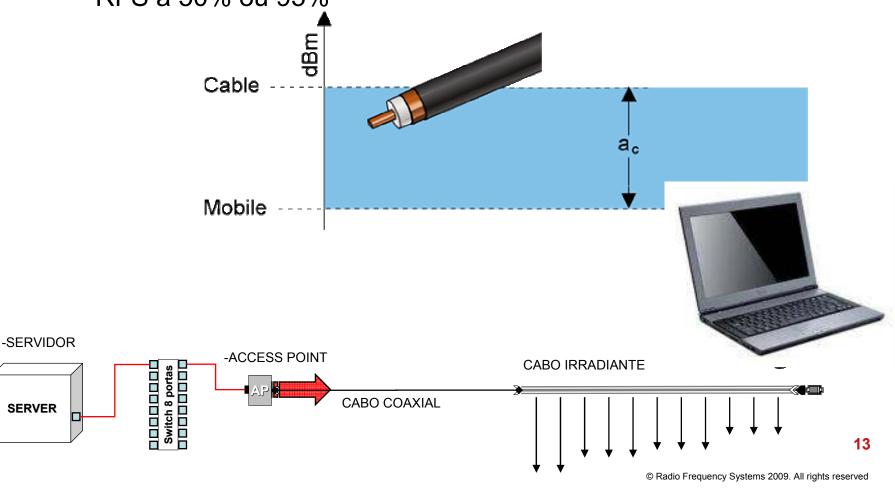


Comparativo de Soluções

Solução Tradicional


Nova Solução Proposta

Atenuação Longitudinal (a_I)


Perda do sinal no cabo num comprimento definido

Atenuação por Acoplamento (a_c)

Perda do sinal entre cabo e da antena móvel de acordo com a IEC (medida a 2m de distância): utilizar valor de catálogo da RFS a 50% ou 95%

Cabo Irradiante RCF12-50JFN

Size	1/2"		
Frequency Selection, MHz	600, 900, 1800/1900, 2200 and above		
Maximum Frequency, MHz	6000		
Cable Type	RCF/RSF		
Jacket	Standard		
Slot Design	Milled (Two-Row)		
Previous Model Number	R1-FLC12-50J		
Impedance, ohm	50 +/-2		
Velocity, %	88		
Inner Conductor de Resistance, ehm/1000 m /1000 ft)	1.57 (0.40)		

Inner Conductor dc Resistance, ohm/1000 m (1000 ft) 1.57 (0.48)

Outer Conductor dc Resistance, ohm/1000 m (1000 ft) 2.23 (0.68)

Outer Conductor Material	Corrugated Copper Tube
Inner Conductor Material	Copper Clad Aluminum wire
Diameter over Jacket, mm (in)	16.2 (0.64)
Diameter Outer Conductor, mm (in)	13.8 (0.54)
Diameter Inner Conductor, mm (in)	4.8 (0.19)
Minimum Bending Radius, Single Bend, mm (in)	125 (4.9)
Cable Weight, kg/m (lb/ft)	0.22 (0.14)
Tensile Force, N (lb)	1000 (225)
Indication of Slot Alignment	None
Storage Temperature, °C (°F)	-70 to +85 (-94 to +185)
Installation Temperature, °C (°F)	-25 to +60 (-13 to +140)
Operation Temperature, °C (°F)	-50 to +85 (-58 to +185)
Stop bands, MHz	None
Recommended Clamp Spacing, m (ft)	0.6 (2.0)
Minimum Distance to Wall, mm (in)	50 (2)

RCF12-50J/JFN/JFL
PERFORMANCE

PERI ORIVIAIVEE		
Frequency, MHz	Longitudinal Loss, dB/100 m (dB/100 ft)	Coupling Loss 50%/95%, dB
75	2.20 (0.67)	50/62
150	3.15 (0.96)	59/71
450	5.70 (1.74)	67/79
800	7.83 (2.39)	67/79
870	8.25 (2.51)	66/78
900	8.40 (2.56)	66/78
960	8.65 (2.64)	66/78
1800	13.1 (3.99)	68/80
1900	13.6 (4.15)	69/81
2000	14.0 (4.27)	72/84
2200	14.7 (4.48)	70/82
2400	15.3 (4.66)	70/82
2600	15.9 (4.85)	70/82
5000	24.8 (7.56)	75/87
5200	25.7 (7.83)	75/87
5800	27.6 (8.41)	75/87
6000	29.9 (8.81)	75/87

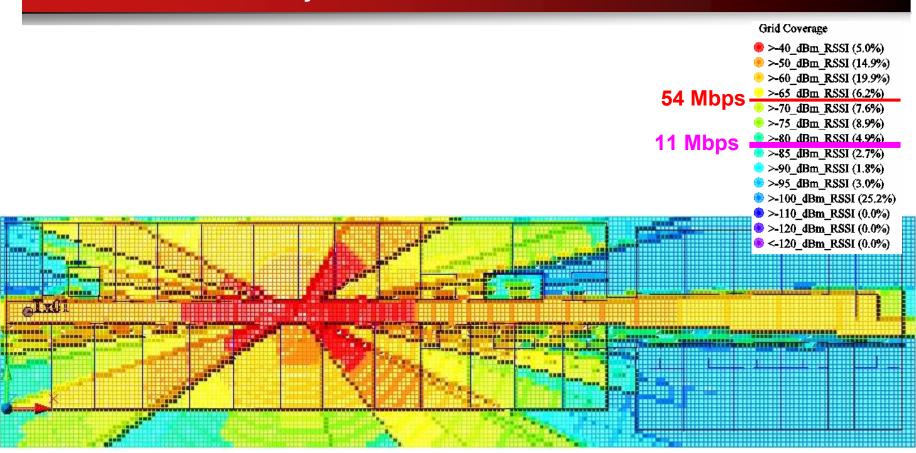
Ferramenta RFS para Cálculo de área de cobertura

Cabo - Modelo	RCF1	12-50J		Cabo - Modelo	RLKU114-50J	
metros	80.00			metros	80.00	
Atenuação dB/m	12.24			Atenuação dB/m	7.30	
Equip	amento			Equipamento		
Output Power dBm	20	20.00 Output Power dBm		20.00		
Perdas - cal	bo (jumpers)			Perdas - cabo (jumpers)		
Longitudinal loss 100m / dB	15			Longitudinal loss 100m / dB	9.13	
Coupling Loss 50% / dB	70.00			Coupling Loss 50% / dB	63.00	
Coupling Loss 90% / dB	82.00			Coupling Loss 90% / dB	71.00	
Atenuação dos jumpers / dB	1.	Atenuação dos jumpers / dB		1.00		
Atenuação Splitter	3.50			Atenuação Splitter	3.50	
Fator de segurança dB	6.00			Fator de segurança dB	6.00	
Distância do cabo	Total Loss S	system / dBm	Distância do cabo		Total Loss System / dBm	
Distancia do cabo	50.00%	95.00%		Distancia do cabo	50.00%	95.00%
2m	-72.74	-84.74		2m	-60.80	-68.80
4m	-75.74	-87.74		4m	-63.80	-71.80
8m	-78.74	-90.74		8m	-66.80	-74.80
16m	-81.74	-93.74		16m	-69.80	-77.80
32m	-84.74	-96.74		32m	-72.80	-80.80
64m	-87.74	-99.74		64m	-75.80	-83.80
108m	-90.74	-102.74		108m	-78.80	-86.80
		Insira o valor de	sej	ado		

Como instalar o cabo?

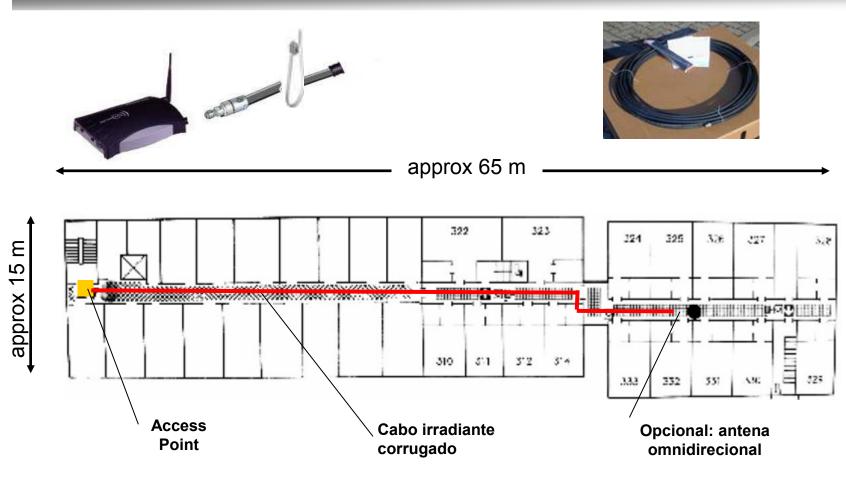
Como instalar o cabo?

- Min. distância para tubos metálicos ou similares em longos percursos > 8,0 cm
- Min. distância para paredes de concreto > 2,0 cm
- Min. raio de curvatura > 12,5 cm, (1/2 única dobra)
- Min. raio de curvatura > 50,0 cm (1/2 várias dobras)
- Não deixe apoiado o cabo sobre calhas/dutos metálicos (causando bloqueio da irradiação eletromagnética)
- Evite instalar o cabo paralelamente a qualquer tipo de cabo em longas distâncias. Caso não seja possível mantenha uma distância mínima de 30 cm.



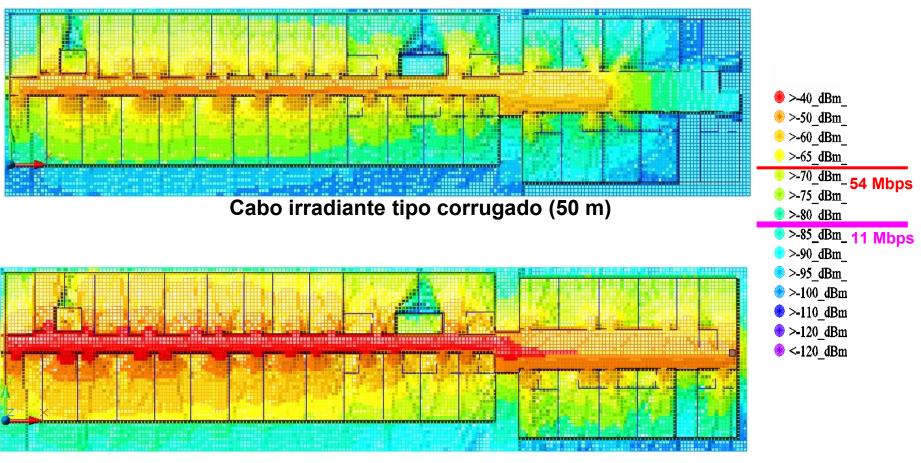
Como ajustar o comprimento do cabo caso ele seja maior que o necessário?

- Remova a capa protetora da extremidade do cabo
- Marque sobre o cabo o comprimento desejado
- Caso o comprimento desejado seja inferior a 30 m, a RFS sugere a utilização de conector e carga nesta extremidade
- Corte o cabo perpendicularmente ao seu eixo
- Limpe a extremidade do cabo com uma escova, eliminando cavacos do interior do condutor interno


Cobertura com a solução tradicional: 1 antena Omnidirecional

Cobertura com 1 antena omnidirecional

Solução de Última Geração



Elementos utilizados no teste com o cabo irradiante (tipo corrugado)

Incremento da performance

Comparação de cobertura com dois tipos de cabos irradiantes

Cabo irradiante tipo liso (65 m)

Incremento da performance

Cobertura utilizando solução com cabo irradiante e com

a adição de antena na extremidade do cabo.

>-40_dBm_RSSI (5.0%)

>-50_dBm_RSSI (14.9%)

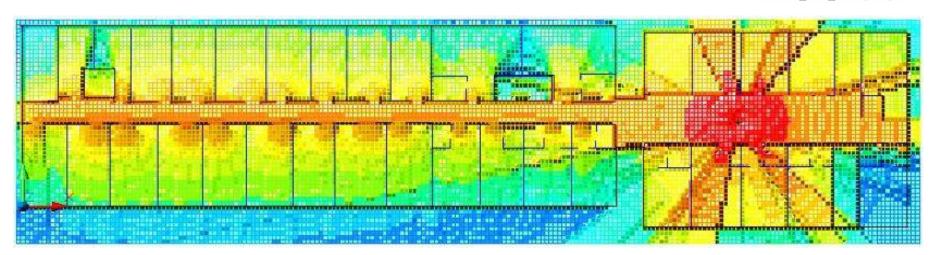
>-60_dBm_RSSI (19.9%)

54 Mbps >-65_dBm_RSSI (6.2%) >-70_dBm_RSSI (7.6%)

♦ >-75 dBm RSSI (8.9%)

11 Mbps

>-80 dBm RSSI (4.9%) >-85 dBm RSSI (2.7%)


>-90_dBm_RSSI (1.8%)

>-95_dBm_RSSI (3.0%)
>-100_dBm_RSSI (25.2%)

>-110_dBm_R\$\$I (0.0%)

>-120_dBm_RSSI (0.0%)

≪-120_dBm_RSSI (0.0%)

Project References

- Shopping Center Iguatemi (SP)
- Shopping Ibirapuera (SP)
- Shopping Jardim Sul (SP)
- SHOPPING MALLS
- Shopping Villa-Lobos (SP)
- Morumbi Shopping (SP)
- Shopping Center Norte (SP)
- Shopping Jardim Analia Franco (SP)
- Shopping Bourbon Country (RS)
- Shopping Iguatemi Maceió (AL)
- Shopping Iguatemi Campina Grande (PB)
- Shopping Curitiba (PR)
- Shopping Estação Plaza Show (PR)
- Shopping Center Neumarket Blumenau (SC)
- Moinhos de Vento (RS)
- Shopping Ponteio (MG)
- BH Shopping (MG)
- Shopping Cidade (MG)
- Big Shopping (MG)

METROS

- Metrô SP UHF (SP)
- Metrô RJ (RJ)
- Metro Buenos Aires (ARG)

TUNNELS

- Túnel Jânio Quadros (SP)
- Túnel Tribunal de Justiça (SP)
- Túnel Maria Maluf (SP)
- Túnel Sebastião Camargo (SP)
- Túnel San Jerônimo (Colômbia)

The Clear Choice®

Diego A. Dicarlo **LatAm Field Service Engineer**

Rua Marcelino Pinto Teixeira, 481 06816-000 - Embu - SP - Brazil

Cell: + 55 11 8906-3240 Phone: + 55 11 4785-6215

Fax: + 55 11 4785-6075

E-mail: diego.dicarlo@rfsworld.com

Skype: diego.dicarlo

MSN: diego-dicarlo@hotmail.com

www.rfsworld.com

